GEWEX Cloud Assessment data base

The datasets are provided in netCDF format, with one file per cloud property, per individual year and observation time of day. The map grid corresponds to 1° latitude x 1° longitude.

The cloud teams produced the L3 data for the common GEWEX Cloud Assessment database by averaging the original L2 cloud products (given at instantaneous pixels) first over each grid cell (1° x 1°) for each time step (day) and then the averages of each grid cell over the month. Polar orbiting satellites provide measurements with one daytime (at a particular local time) and one nighttime overpass (12 hours later). At higher latitudes cross-track scanning instruments may measure the same location several times within 12 hours, whereas in the tropics each location is only measured once. Therefore, to keep track of the diurnal cycle of clouds, it is preferable to keep only one observation per half-day at every location, by choosing the observation with the smallest viewing angle at higher latitudes. Most of the datasets have followed this concept. Only the two MODIS teams started from daily L3 data which kept the orbit overlap at higher latitudes.

range

Each file contains monthly averages and statistics.

The following cloud properties (variables) are reported:

•	Cloud amount (fractional cloud cover)	CA	(0-1)
•	Cloud temperature at top	СТ	(150-320 K)
•	Cloud pressureat top	СР	(1013-100 hPa)
•	Cloud height (above sea level)	CZ	(0-20 km)
•	Cloud IR emissivity	CEM	(0-1)
•	Effective Cloud amount (CA weighted by CEM)	CAE	(0-1)
•	Cloud (visible) optical depth	COD	(0-400)
•	Cloud water path (liquid, ice)	CLWP, CIWP	$(0-3000 \text{ g/m}^2)$
•	Average water path (CLWP/IWP weighted by CA)ALWP, AIWP	$(0-3000 \text{ g/m}^2)$
•	Cloud effective particle size (liquid, ice)	CREW, CREI	(0-200 µm)

Statistics are provided for these variables for all clouds and separately stratified by cloud top height category. The latter is defined by cloud top pressure as in ISCCP: high-level clouds (CP < 440 hPa), mid-level clouds (440 hPa \leq CP < 680 hPa) and low-level clouds (680 hPa \leq CP). ISCCP further classifies and names cloud types by COD range within each height category. The cloud distribution in these different categories is given by two-dimensional histograms of CP and COD.

In addition to CAH, CAM and CAL, we define relative height stratified cloud amounts which are scaled by the total cloud amount: CAHR = CAH/CA, CAMR = CAM/CA and CALR = CAL/CA (in %). The scaling by total cloud amount shows how the different height categories are divided among all clouds present.

Statistics are also distinguished by cloud phase (liquid, ice). Thermodynamic phase may be distinguished by CT (ISCCP, TOVS Path-B, AIRS-LMD), by polarization signature (POLDER, CALIPSO) or by spectral radiance differences (PATMOS-x, MODIS, ATSR-GRAPE).

In addition to monthly averages, intra-monthly standard deviations are reported, as well as histograms of some variables.

The files contain the following information for each map grid cell for each variable:

•	nb of orbit passages	n_tot
•	percentage of retrieved pixels out of cloudy pixels	f_var
•	monthly average values	a_var
•	intra-monthly variability (standard deviation)	s_var
•	histograms with monthly statistics (number of pixels)	h var

where 'var' stands for one of the cloud properties described above and listed in the table below.

Variable names of the cloud properties with statistics also distinguished by altitude (H: CP < 440 hPa, M: 440 hPa < CP < 680 hPa, L: CP > 680 hPa) and by thermodynamical phase (W: water clouds, I: ice clouds IH: ice clouds with CP < 440 hPa) available in the GEWEX Cloud Assessment batabase.

Total	Н	М	L	W	1	IH
CA	CAH	CAM	CAL	CAW	CAI	CAIH
CAE	CAEH	CAEM	CAEL	CAEW	CAEI	CAEIH
	CAHR	CAMR	CALR	CAWR	CAIR	CAIHR
CT	CTH	CTM	CTL	CTW	CTI	CTIH
CP						
CZ						
CEM	CEMH	CEMM	CEML	CEMW	CEMI	CEMIH
COD	CODH	CODM	CODL	CODW	CODI	CODIH
				CLWP	CIWP	CIWPH
				CREW	CREI	

This data base has already revealed its usefulness in the interpretation of cloud properties retrieved from different satellite instruments, and we hope that it will further contribute to climate studies and climate model evaluation.

The whole data base can be downloaded via the website http://climserv.ipsl.polytechnique.fr/gewexca/ or via ftp server (zipped files):

File name convention: var_dataset_satellite_obstime_year.nc

ISCCP

1984-2007: var_ISCCP_D1_0300AM_yyyy.nc, PM, AMPM var_ISCCP_D1_0900AM_yyyy.nc, PM, AMPM var_ISCCP_D1_AMPM_yyyy.nc (including 0300, 0900 AM & PM) PATMOSX var PATMOSX NOAA 0130AM vvvv.nc, PM 1982 – 2009: 1992 - 2009: var_PATMOSX_NOAA_0730AM_yyyy.nc, PM HIRS 1984 - 2006: var_HIRS_NOAA_0730AM_yyyy.nc, PM 1986 - 2008: var_HIRS_NOAA_0130AM_yyyy.nc, PM TOVSB 1987 – 1994: var TOVSB NOAA 0730AM yyyy.nc, PM, AMPM (CA,CP,CT,CEM,COD) 1989 – 1994: var TOVSB NOAA 0130AM yyyy.nc, PM, AMPM (CA,CP,CT,CEM,COD) 1987 – 1990: varIH mp TOVSB NOAA 0730AM yyyy.nc, PM, AMPM (microphysics semi-transp. Ci) AIRS-LMD 2003 – 2009: var_AIRS-LMD_AQU_0130AM_yyyy.nc, PM, AMPM (CA,CP,CT,CEM,COD) 2004 – 2009: varIH mp AIRS-LMD AQU 0130AM yyyy.nc, PM, AMPM (microphysics semi-transp. Ci) MODIS-ST 2001 – 2009: var_MODIS-ST_TER_1030AM_yyyy.nc, PM 2003 – 2009: var_ MODIS-ST_AQU_0130AM_yyyy.nc, PM MODIS-CE 2001 - 2009 : var MODIS-CE TER 1030AM vvvv.nc, PM 2003 - 2009 : var MODIS-CE AQU 0130AM yyyy.nc, PM CALIPSO-ST 2007 – 2008: var CALIPSO-ST ATRAIN 0130AM yyyy.nc, PM, AMPM CALIPSO-GOCCP 2007 – 2008: var_CALIPSO-GOCCP_ATRAIN _0130AM_yyyy.nc, PM, AMPM POLDER 2006 – 2008: var POLDER PARASOL 0130PM yyyy.nc MISR 2001 – 2009: var_MISR_TER_10AM_yyyy.nc ATSR-GRAPE 1997 - 2002: var_ATSR-GRAPE_ERS_AM_yyyy.nc 2003 – 2009: var_ATSR-GRAPE_ENV_AM_yyyy.nc

parameters and bin boundaries

Parameter	ld	Boundaries	bins	unit
cloud amount	CA	0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1	10	
cld amount, high	CAH	0-1	-	
cld amount, mid	CAM	0-1	-	
cld amount, low	CAL	0-1	-	
cld amount, water	CAW	0-1	-	
cld amount, ice	CAI	0-1	-	
cld amount, iceH	CAIH	0-1	-	
cld amount, high/CA	CAHR	0–100	-	%
cld amount, mid /CA	CAMR	0-100	-	%
cld amount, low /CA	CALR	0-100	-	%
Effective cloud amount	CAE	0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1	10	
Eff cld amount, high	CAEH	0–1	-	
Eff cld amount, mid	CAEM	0–1	-	
Eff cld amount, low	CAEL	0–1	-	
Eff cld amount, water	CAEW	0–1	-	
Eff cld amount, ice	CAEI	0-1	-	
Eff cld amount, iceH	CAIEH	0–1	-	
cloud pressure	СР	100-1100	10	hPa
Cloud height	CZ	0-20	40	km
cloud temperature	СТ	150,180,185,190,195,310, 320	28	K
cloud temp, high	СТН	150,180,185,190,195,310, 320	28	K
cloud temp, mid	СТМ	150,180,185,190,195,310, 320	28	K
cloud temp, low	CTL	150,180,185,190,195,310, 320	28	K
cloud temp, water	СТЖ	150,180,185,190,195,310, 320	28	K
cloud temp, ice	СТІ	150,180,185,190,195,310, 320	28	K
cloud temp, iceH	СТІН	150,180,185,190,195,310, 320	28	K
cloud_emissivity	CEM	0,0.2,0.4,0.8,0.95,1	5	
cld emissivity, high	СЕМН	0,0.2,0.4,0.8,0.95,1	5	
cld emissivity, mid	CEMM	0,0.2,0.4,0.8,0.95,1	5	
cld emissivity, low	CEML	0,0.2,0.4,0.8,0.95,1	5	
cld emissivity, water	CEMW	0,0.2,0.4,0.8,0.95,1	5	
cld emissivity, ice	CEMI	0,0.2,0.4,0.8,0.95,1	5	
cld emissivity, iceH	CEMIH	0,0.2,0.4,0.8,0.95,1	5	
cloud optical depth	COD	0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1, 2, 3, 4, 5,	34	
		6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70		
		,80 ,90 ,100, 150, 200, 300 ,>300		
cld opt. depth, high	CODH	"	34	
cid opt. depth, mid	CODM		34	
cld opt. depth, low	CODL		34	
cld opt. depth, water	CODW	"	34	
cid opt. depth, ice			34	
cid opt. depth, iceH	CODIH		34	-2
cid liquid water path	CLWP	0, 5, 10, 15, 20, 25, 30, 40, 50, 100, 150,	22	gm
		200, 250, 300, 350, 400, 450, 500, 1000, 1500, 2000, > 2000		
Cld ice water noth		1500, 2000, 3000, >3000	22	am ⁻²
Cid ice water path		"	22	gm ⁻²
ou ice water path H			22	gm ⁻²
av. iiquiu water path			-	911 am ⁻²
av. ice water path			-	911 am ⁻²
av. ice water patri H			-	giii
	GREW	U, 2, 4, 0, 0, 10, 12, 14, 10, 10, 20 22 24 26 28 20 25 40 45 50 50	20	μm
old off radius ico		20,22,24,20,20, 30, 33, 40, 43, 30, 20	21	
	UREI	0, 2, 4, 0, 0, 10, 12, 14, 10, 10, 0, 22, 24, 26, 28, 20, 25, 40, 45, 50, 55, 60, 65	51	μm
		70 75 80 90 100 110 120 150 5150		
cld eff. radius. iceH	CREIH	"	31	um

var1 [bins]	bin boundaries	var2 [bins]	bin boundaries
COD [7bins]	0, .3,1.3, 3.6, 9.4, 23	CP [7 bins]	0, 180, 310, 440, 560, 680,
	,60 ,1000		800, 1100 hPa
CEM [5bins]	0, .2, .4, .8, .95, 1	CP [7 bins]	0, 180, 310, 440, 560, 680,
			800, 1100 hPa
CODW [7bins]	0, .3, 1.3, 3.6, 9.4, 23	CREW[10bins]	2, 4, 6, 8, 10, 12.5, 15 17.5,
	,60 ,1000		20, 25, 30μm
CODI [7bins]	0, .3, 1.3, 3.6, 9.4, 23	CREI [13bins]	0, 5, 10, 15, 20, 25, 30, 35, 40,
	,60 ,1000		45, 50, 55, 60, 90μm
CEMI [5bins]	0, .2, .4, .8, .95, 1	CREI [13bins]	0, 5, 10, 15, 20, 25, 30, 35, 40,
			45, 50, 55, 60, 90μm

joint histograms: parameters and bin boundaries:

The following two tables recapitulate available time periods and cloud properties of the participating data sets:

Approximate local observation times and time periods covered by the individual datasets of the GEWEX Cloud Assessment database.

dataset	1:30	3:00	7:30	9:00	10:30	1:30	3:00	7:30	9:00	10:30	Time
	AM	AM	AM	AM	AM	PM	PM	PM	PM	PM	period
ISCCP		X		X			X		X		1984-2007
microphys.											1984-2000
PATMOSx	X					X					1982-2009
			х					х			1992-2009
											histos:
											1998-2009
HIRS-NOAA	X					X					1986/87/89
	х					X					1991-2004,
	х					X					2006
			х					х			1987/89/90
			х					х			1992-1996
			х					х			1999
			Х					X			2002-2006
			X					X			2008
TOVSB			Х					X			1987-1994
microphys.			Х					X			1987-1990
	X					X					1989-1994
AIRS-LMD	х					x					2003-2009
microphys.											2004-2009
MODIS-ST					х					X	2001-2009
	X					X					2003-2009
MODIS-CE					Х					X	2001-2009
											histos :
	х					X					>2006
MICD											2003-2008
					X						2001-2009
						X					2000-2008
CDADE					X						1997-2002
GRAPE											2003-2009
CALIPSO	Х				1	Х					2007-2008

Variables and statistics (a = monthly average, s = intra-monthly variability, h = histogram) provided by the participating datasets (ISCCP, PATMOS-x, HIRS-NOAA, TOVS Path-B, AIRS-LMD, MODIS-ST, MODIS-CE, MISR, POLDER, ATSR-GRAPE, CALIPSO-ST, CALIPSO-GOCCP).

variable	ISCCP	PATMOSx	HIRS-	TO/SB	AIRS-	MODIS	MODIS	MISR	POLDER	ATSR-	CALIPSO-	CALESO
vanaoic	10001	7 1111001	NOAA	ICIOD	LMD	-ST	-CE	more		GRAPE	ST	GOODP
CA	ash	as	а	ash	ash	ash	ash	а	ash	ash	ah	ah
CAH	as	as	a	as	as	as	as	a	ash	uon	a	a
CAM	as	as	a	as	as	as	as	a	ash		a	a
CAL	as	as	a	25	25	as	as	a	ash		a	a
CAW	as	as	u	as	25	as	as	ŭ	ash		a	u
CAL	25	25		25	25	25	25		ash		а а	
	25	25		25	25	as	25		ash		a 2	
	ash	25	2	as	ash	ach	as		ash		a	
	a511	a5 00	a	a511	a511	asii	a511		asii			
	d5 26	d5 26	a	d5 26	d5 26		a5 26					
	a5 00	a5 00	a	a5 00	a5 00		a5 00					
	d5	as	a	d5	d5		as					
	as	as		as	as		as					
	as	as		as	as		as					
	as	-	-	as	as	_	as	_	aab		-	-
	as	a	a	as	as	a	as	a	asn	as	a	a
	as	a	a	as	as	a	as	a	asn	as	a	a
	as	a	a	as	as	a	as	a	asn	as	a	a
CAWR	as	а		as	as	а			asn	as	а	
CAIR	as	а		as	as	а			asn	as	а	
CAIHR	as	а		as	as	a			ash		а	
CP	ash	ash	ah	ash	ash	ash	as		ash	ash		
CZ	ash	_			ash	-	ash	ah			ah	ah
СТ	ash	ash	ah	ash	ash	ash	as			ash	ah	ah
СТН	ash	ash	а	ash	ash		as			ash	ah	ah
СТМ	ash	ash	а	ash	ash		as			ash	ah	ah
CTL	ash	ash	а	ash	ash		as			ash	ah	ah
CTW	ash	ash		ash	ash	ash	as			ash	ah	
CTI	ash	ash		ash	ash	ash	as			ash	ah	
CTIH	ash	ash		ash	ash		as			ash	ah	
CEM	ash	ash	а	ash	ash	ash	as			ash		
CEMH	ash	ash	а	ash	ash		as			ash		
CEMM	ash	ash	а	ash	ash		as			ash		
CEML	ash	ash	а	ash	ash		as			ash		
CEMW	ash	ash		ash	ash		as					
CEMI	ash	ash		ash	ash		as					
CEMIH	ash	ash		ash	ash		as					
COD	ash	ash		ash	ash	ash	ash		ash	ash		
CODH	ash	ash		as	ash	ash	as		ash	ash		
CODM	ash	ash		as	ash	ash	as		ash	ash		
CODL	ash	ash		as	ash	ash	as		ash	ash		
CODW	ash	ash		as	ash	ash	ash		ash	ash		
CODI	ash	ash		as	ash	as	ash		ash	ash		
CODIH	ash	ash		as	ash	ash	as		ash	ash		
CLWP	ash	ash				ash	ash			ash		
CIWP	ash	ash				ash	as			ash		
CIWPH	ash	ash		ash	ash	uon	as			ash		
CRFW	ash	ash		4011	4011	ash	ash			ash		
CREI	ash	ash				ash	ash			ash		
	asii	a511		aab	aab	asii	00			asii		
	asn			asii	asi1	asii	85			asi1		
COD/CP	X	X		X	X				X	X		
CODW/CP						X						
CODI/CP				X	X	X						
CEM/CP	X	x		X	X	X						
CODWCREW	X	X				X						
CODICRE	X	х		X	X	X						
CEMICRE	X	X		Х	Х							